User Tools

Site Tools


en:lesson06

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
en:lesson06 [2019/10/22 14:40]
golikov
en:lesson06 [2021/04/05 13:45] (current)
golikov
Line 1: Line 1:
-====== ​Capturing a Meteor ​Satellite Image ======+====== ​Obtaining an image from the Meteor-M 2 satellite ​======
  
-===== Meteor-M 2 satellite =====+===== Learning the operation principle of Meteor-M 2 satellite =====
  
-The launch date of the Meteor-M ​apparatus No. 2 is July 8, 2014.+The launch date of the Meteor-M 2 satellite ​is July 8, 2014.
  
 ==== Purpose ==== ==== Purpose ====
  
-A global ​observation of the atmosphere and underlying surface of the Earth, ​which allows systematically obtaining ​hydrometeorological and heliogeophysical information ​on a planetary scale.+Global ​observation of the atmosphere and underlying surface of the Earth, ​allowing systematic ​hydrometeorological and heliogeophysical information ​in a planetary scale.
  
 {{:​en:​image_44.png?​700|}} {{:​en:​image_44.png?​700|}}
  
-==== Solved problems ​====+==== Tasks to be accomplished ​====
  
-  *   global observation of the underlying surface ​of the Earth+  * global observation of the underlying ​Earth surface; 
-  *   environmental ​monitoring;​ +  * monitoring ​of environmental conditions
-  *   monitoring emergency situations ​of natural and man-made ​nature+  * monitoring ​of emergency situations ​characterized by natural and man-made ​character
-  *   solving problems of agriculture ​and forestry; +  * agricultural ​and forestry ​tasks
-  *   Scientific ​research; +  * scientific ​research; 
-  *   collection and transmission of data from PSD of various ​types (ground, ice, drifting)+  * collection and transmission of data from different ​types of SAR (ground, ice, drifting)
  
 +==== Main characteristics ====
  
-==== Key Features ====+  * Orbit - circular sun-synchronous,​ Hs=832 km, T=101,3 min, i=98,85º 
 +  * Power supply: daily average - up to 1000 W, maximum within 10 minutes - up to 1350 W 
 +  * Term of active existence: 7 years 
 +  * Mass - 2700 kg 
 +  * Mass of the payload - 320 kg
  
-  *   Orbit - Solar-synchronous circular, Нср = 832 km, Т = 101.3 min, i = 98.85º 
-  *   Energy supply: daily average - up to 1000 watts, maximum for 10 minutes - up to 1350 watts 
-  *   Active life: 7 years 
-  *   Weight - 2700 kg 
-  *   Payload mass - 320 kg 
  
-==== The basic structure of information equipment ====+==== Basic structure of information equipment ====
  
-  *   Spectrozonal optical instruments of visible and IR ranges (KMSS, MSU-MR) +  * Spectrozonal optical instruments of visible and infrared ​ranges (KMSS, MSU-MR) 
-  *   Microwave radiometric ​equipment ​for temperature-humidity sounding ​of the atmosphere ​(MTVZA-GYA) - microwave ​radiometer +  * Microwave radiometric ​instrumentation ​for temperature ​and humidity ​range atmospheric ​sounding (MTVZA-GYA) - Microwave ​radiometer 
-  *   Infrared Fourier spectrometer ​of temperature and humidity ​sensing ​(IKFS-2) - for spacecraft ​Meteor-M ​No. 2 +  * Infrared Fourier spectrometer ​for temperature and humidity ​probing ​(IKFS-2) - for spacecraft No.2 (Meteor-M) 
-  *   Heliogeophysical instrument ​complex ​(GGAK-M), ​combining ​five instruments ​on a single platform ​for studying radiation ​of a wide energy spectrum +  * Heliogeophysical instrument ​suite (GGAK-M), ​incorporating ​five instruments for studies of emissions ​of a wide energy spectrum ​in a single platform 
-  *   On-board ​radar complex (BRLK), ​which allows ​to obtain radar images of the earth'​s ​surfaceregardless of weather conditions +  * Airborne ​radar complex (BRLK), ​enabling users to obtain radar images of the Earth surface regardless of current ​weather conditions 
-  *   Radio engineering complex for data collection and transmissionincluding ​a system for receiving data from ground-based measuring ​platforms ​(SSPD) +  * Radio-based ​data collection and transmission ​system ​including ​the ground-based measuring ​platform data acquisition system ​(SSPD) 
-  *   Main technical characteristics of on-board equipment of the spacecraft "Meteor-M"+  * Main technical characteristics of Meteor-M ​spacecraft onboard equipment
  
-==== Small-resolution multi-channel scanning device (MSU-MR): ==== 
  
-Spectral ranges of shooting ​microns:+==== Low-resolution multi-channel scanning device (MSU-MR): ==== 
 + 
 +Spectral ranges of imagery, ​microns:
  
   *   red (0.5 ÷ 0.7);   *   red (0.5 ÷ 0.7);
Line 50: Line 51:
   *   far infrared (11.5 ÷ 12.5)   *   far infrared (11.5 ÷ 12.5)
  
-Coverage ​(when shooting ​from orbit 835 km) - 2800 +Capture bandwidth ​(when capturing ​from the 835 km orbit) - 2800 Spatial resolution (pixel ​projection size on the Earth with H=835 km) - < 1.0 km 
-Spatial resolution (projection of a pixel onto the Earth with H = 835 km) - <1.0 km+
 ==== KMSS: ==== ==== KMSS: ====
  
  
 The number of spectral channels - 3 The number of spectral channels - 3
-Spectral ranges of shooting ​microns:+Spectral ranges of imaging ​microns:
  
   *   green MSU-50 (0.37 ÷ 0.45), MSU-100 (0.535 ÷ 0.575);   *   green MSU-50 (0.37 ÷ 0.45), MSU-100 (0.535 ÷ 0.575);
Line 62: Line 63:
   *   near infrared MSU-50 (0.58 ÷ 0.69), MSU-100 (0.76 ÷ 0.9)   *   near infrared MSU-50 (0.58 ÷ 0.69), MSU-100 (0.76 ÷ 0.9)
  
-Coverage with two simultaneously operating ​cameras - 900 km +Coverage with two cameras ​working simultaneously ​- 900 km Resolution - 60-120 m
-Resolution - 60-120 m +
-==== Onboard radar complex BRLK: ====+
  
 +==== Airborne radar complex BRLK: ====
 +
 +Probing signal carrier frequency - 9500-9700 MHz Bandwidth - at least 600 km Spatial resolution:
  
-The carrier frequency of the probe signal is 9500-9700 MHz 
-Shooting bandwidth - at least 600 km 
 Spatial Resolution: Spatial Resolution:
  
Line 74: Line 74:
   *   medium resolution mode - 0.4x0.5 km.   *   medium resolution mode - 0.4x0.5 km.
  
-==== Microwave scanner ​for temperature-humidity ​sounding of the atmosphere ​MTVZA-GYA: ====+==== Microwave scanner ​of atmospheric ​temperature ​and humidity ​probing ​MTVZA-GYA: ====
  
 {{:​006.png?​200|}} {{:​006.png?​200|}}
  
-  *  ​The number ​of channels - 29.+  *  ​Number ​of channels - 29.
   *  Spectral range - 10.6 ÷ 183.31 GHz   *  Spectral range - 10.6 ÷ 183.31 GHz
-  *  Span - 1500km+  *  Field of view - 1500km
   *  Spatial resolution - 16-198 km   *  Spatial resolution - 16-198 km
  
 +Letters GYA provided in the abbreviation were added in honor of Gennady Yakovlevich Guskov (1919-2002),​ the outstanding designer of space instruments,​ who pioneered development of a new direction in the microwave probing of the Earth.
  
-The letters GY in the abbreviation are added in honor of Gennady Yakovlevich Guskov (1919-2002),​ +==== Data collection and transfer system SSPD: ====
-an outstanding designer of space devices, who stood at the origins of the development of a new direction in the field of microwave sounding of the Earth.+
  
-==== The system ​of data collection and transmission ​of data storage system: ====+  * Number ​of simultaneously serviced DCS platforms - up to 5 thousand. 
 +  * Number ​of simultaneously served DCS platforms - up to 150.
  
-  *   The number of PSD platforms served is up to 5 thousand +===== Obtaining images from the Meteor-M 2 satellite=====
-  *   The number of simultaneously served PSD up to 150.+
  
 +The following software is used to acquire images from the Meteor-M 2 satellite:
  
-===== Receiving photographs from the Meteor-M 2 satellite =====+  * SDR# software for radio signal receipt; 
 +  * Orbitron for satellite tracking and Doppler effect control; 
 +  * Meteor-M 2 LRPT Analyzer for image interpretation.
  
-The following software is used to receive images from the Meteor-M 2 satellite: 
  
-  *   SDR # for receiving a radio signal; +Launch ​the SDR# software ​and select the radio receiver ​type: RTL-SDR connected via USB.
-  *   Orbitron for tracking ​the satellite and taking into account the Doppler effect; +
-  *   Meteor-M 2 LRPT Analizer for decrypting images. +
- +
-Launch ​SDR # and select the type of radio: RTL-SDR connected via USB.+
  
 {{:​06image002.png?​200|}} {{:​06image002.png?​200|}}
    
-In the Radio section, set the switch to WFM mode and set the Bandwidth ​to 34000.+Set the switch to the WFM mode and set the bandwidth ​to 34000 in the "​Radio” section.
  
 {{:​004.png?​200|}} {{:​004.png?​200|}}
  
-Make sure the Filter Audio” checkbox ​is unchecked.+Make sure that the "Filter Audio" point is unchecked.
  
 {{:​005.png?​200|}} {{:​005.png?​200|}}
    
-Next, you need to increase ​the signal ​gain. To do this, click on the gear.+Further ​you need to increase signal ​amplification. To do this, click on the gear icon.
  
 {{:​06image004.png?​200|}} {{:​06image004.png?​200|}}
  
-  +Move the slider so that the noise level increases ​by about 10 dB.
-Move the slider so that the noise level rises by about 10dB.+
  
 {{:​05image012.png?​200|}} {{:​05image012.png?​200|}}
  
-            +This is how the signal ​received ​from the Meteor-M 2 satellite ​looks like.
-This is what the signal from the Meteor-M 2 satellite ​should look like.+
  
 {{:​06image008.png?​300|}} {{:​06image008.png?​300|}}
   ​   ​
-In the Tracking DDE Client ​sectionwhen Orbitron ​is connected ​correctly, information about the tracked satellite will appear.+Information about tracked satellites will appear in the field “Tracking DDE Clientif Orbitron ​has been connected ​properly.
  
 {{:​06image009.png?​200|}} {{:​06image009.png?​200|}}
  
-Launch Orbitron and update TLE first. Click on the tool button.+Launch Orbitron and update TLE firstly. Click the button ​with a tools indication.
  
-{{:​en:​image_43.png?​400|}}+{{:​en:​image_43.png?​500|}}
  
-Press the zipper ​button to update ​the TLE.+Click on the lightning ​button to update TLE.
  
-{{:​en:​image_41_.png?​400|}}+{{:​en:​image_41_.png?​500|}}
  
-Then select ​the weather satellite information ​file. +Select ​the file containing information about the weather satellites. Click on the “Load ​TLE” button.
-Click the Download ​TLE button.+
  
 {{:​en:​image_26.png?​150|}} {{:​en:​image_26.png?​150|}}
Line 146: Line 141:
 Download the weather.txt list Download the weather.txt list
  
-{{:06image014.png?400|}}+{{:en:​orbitron_2.png?400|}}
  
-In the side list on the right, only weather satellites will appearChoose ​Meteor-M2, NOAA15, NOAA18, NOAA19.+Only weather satellites will show up in the side list on the right. ​Select ​Meteor-M2, NOAA15, NOAA18, NOAA19.
  
 {{:​06image015.png?​150|}} {{:​06image015.png?​150|}}
  
-The selected satellites will be shown in the main program ​window.+All selected satellites will be shown in the main software ​window.
  
 {{:​06image016.png?​600|}} {{:​06image016.png?​600|}}
  
  
-Then go to the Calculation tab and click on the Calculation button.+Proceed ​to the Calculation” tab and click the Calculation” button.
  
-{{:​en:​image_46.png?​400|}}+{{:​en:​image_46.png?​500|}}
  
-The satellite ​will automatically ​calculate the time of flight. Go to the Rotor / Radio tab and make sure the tracking button is pressed. ​In the window ​with the reception frequency (Dnlink / MHz) the following correct frequency ​should be set: Meteor ​M2 - 137.10 MHz+The satellites'​ overflight times will be calculated ​automatically. Go to the "Rotor/Radio" ​tab and make sure the tracking button is pressed. ​The box with indication of the reception frequency (Dnlink/​MHz) ​shall be used to set the following correct frequency: Meteor-M 2 - 137.10 MHz
  
-{{:​en:​image_45.png?​400|}}+{{:​en:​image_45.png?​500|}}
  
  
-===== Meteor-M 2 LRPT Analyzer ​Setup =====+===== Setting up the Meteor-M 2 LRPT Analyzer =====
  
-To decrypt ​signals received from the Meteor-M 2 satellite, there is special Meteor-M 2 LRPT Analizer program that receives an audio signal ​received ​from the satellite using the SDR # program+In order to decode the signals received from the satellite ​Meteor-M 2, there is the special ​software called ​Meteor-M 2 LRPT Analyzer which receives an audio signal ​taken from the satellite using the SDR# software as its input.  
-When a satellite signal appears, the Meteor-M 2 LRPT Analizer program starts ​automatically.+ 
 +The Meteor-M 2 LRPT Analyzer is launched ​automatically ​when the signal is received from the satellite.
  
 {{:​06image019.png?​400|}} {{:​06image019.png?​400|}}
  
-The signal quality can be determined ​by the diagram ​in the upper left corner of the program. +The signal quality can be determined ​based on the chart in the upper left corner of the softwareGood signal quality ​- the satellite ​is at the altitude ​of 50 degrees above the horizon.
-A good signal quality ​is a satellite at a height ​of 50 degrees above the horizon.+
  
 {{:​06image020.png?​200|}} {{:​06image020.png?​200|}}
Line 180: Line 175:
 {{:​06image021.png?​400|}} {{:​06image021.png?​400|}}
  
- +Excellent signal quality - satellite ​is at the altitude ​of 85 degrees above the horizon.
-Excellent signal quality - satellite at a height ​of 85 degrees above the horizon.+
  
 {{:​06image022.png?​200|}} {{:​06image022.png?​200|}}
Line 187: Line 181:
 {{:​06image023.png?​400|}} {{:​06image023.png?​400|}}
  
-Signal strength information ​is displayed ​below the chart.+Information about the signal level is displayed ​under the diagram.
  
 {{:​06image024.png?​400|}} {{:​06image024.png?​400|}}
  
-In SDR # it can be seen that the satellite ​signal level is more than 20 decibels ​above the noise level.+Using the SDR# software a user can see that the signal level from the satellite ​is more than 20 decibels ​higher than the noise level.
  
 {{:​06image025.png?​200|}} {{:​06image025.png?​200|}}
  
-On the left, images ​in the visible range will appear line by line, and on the right in the IR range.+The left part provides information line by line in the visible range and the right one - in the infrared ​range.
  
 {{:​06image026.png?​400|}}{{:​06image027.png?​200|}} {{:​06image026.png?​400|}}{{:​06image027.png?​200|}}
  
-When you click the Generate RGB buttonthe final image will be generated.+Clicking on the "Generate RGB" ​button ​provides ​the resulting ​image.
  
 {{:​06image028.png?​200|}} {{:​06image028.png?​200|}}
  
-A special window ​opens with the received ​image, which can be saved.+A special window with the obtained ​image will be opened and a user can save it.
  
 {{:​06image029.png?​200|}} {{:​06image029.png?​200|}}
  
-Analyze the resulting ​image and try to find cities and geographical objects on it yourself.+A user can also analyze an obtained ​image and try to find cities and geographical objects on it on one's own. 
 + 
 +Compare the image with the image taken earlier and check in what way the atmospheric situation has changed.
  
-Compare the image with the image taken earlier, and see how the situation in the atmosphere has changed. 
  
  
en/lesson06.1571744444.txt.gz · Last modified: 2020/03/25 16:03 (external edit)